Publicação em Diário da República: Despacho n.º 8644/2020 - 08/09/2020
6 ECTS; 1º Ano, 2º Semestre, 56,0 TP , Cód. 911934.
Docente(s)
- Luís Miguel Merca Fernandes (1)(2)
- Carlos Filipe Perquilhas Baptista (2)
(1) Docente Responsável
(2) Docente que lecciona
Pré-requisitos
Não Aplicável
Objetivos
Com esta disciplina pretende-se familiarizar os alunos com áreas da Matemática tais como a (a) Lógica, Análise Combinatória e Teoria de Grafos, essenciais ao estudo de matérias específicas como a Verificação Formal, a Análise de Sistemas e os Problemas de Redes. Complementarmente, pretende-se que os alunos adquiram uma visão global sobre (b) os métodos numéricos para resolução de alguns dos mais relevantes problemas matemáticos, tais como os Sistemas de Equações Lineares, Solução de Equações e de Sistemas de Equações Não Lineares, Interpolação Polinomial e Integração Numérica.
Programa
1ª parte
1. Noções Fundamentais de Teoria dos Conjuntos e Lógica
1.1. Conjuntos finitos e conjuntos infinitos;
1.2. Subconjunto de um conjunto e o conjunto vazio;
1.3. Conjunto das partes de um conjunto;
1.4. Produto cartesiano de conjuntos, intersecção e reunião de conjuntos;
1.5. Diagramas de Venn de subconjuntos;
1.6. Leis distributivas e leis de De Morgan;
1.7. Lógica proposicional.
2. Provas por indução e definições recursivas
2.1. Princípio da Indução Matemática (formas forte e fraca);
2.2. Definição recursiva de conjuntos;
2.3. Definição recursiva de funções.
3. Relações
3.1. Definição de relação;
3.2. Relações de equivalência, conjuntos de equivalência e classes de equivalência;
3.3. Relações de ordem parciais e totais;
3.4. Elementos maximais e minimais; elementos máximos e mínimos.
4. Grafos e Digrafos
4.1. Definições e propriedades fundamentais;
4.2. Matrizes de adjacência e de incidência;
4.3. Ligações em grafos e digrafos;
4.4. Passeios, caminhos e circuitos em grafos e digrafos;
4.5. Alcançabilidade em grafos: grafos conexos e desconexos;
4.6. Alcançabilidade em digrafos: digrafos fortemente conexos, digrafos fracamente conexos e digrafos desconexos;
4.7. Caminhos e circuitos eulerianos;
4.8. Caminhos e ciclos hamiltonianos;
4.9. Aplicação à coloração de vértices;
4.10. Árvores e suas aplicações: Árvores geradoras e árvores binárias;
4.11. Algoritmos de Kruskal e de Prim;
4.12. Problemas de Caminho mais curto: Algoritmos de Dijkstra e de Floyd-Warshall.
2ª parte
5. Métodos Numéricos para Sistemas de Equações Lineares
5.1. Métodos Indiretos ou Iterativos:
5.1.1. Método iterativo de Jacobi;
5.1.2. Método iterativo de Gauss-Seidel.
6. Métodos Numéricos para Equações e Sistemas de Equações Não Lineares
6.1. Localização das raízes;
6.2. Métodos iterativos:
6.2.1. Método da Bissecção;
6.2.2. Método do Ponto Fixo;
6.2.3. Método de Newton;
6.2.4. Método da Secante e Método da Corda Falsa;
6.3. Método de Newton para sistemas de equações não lineares.
7. Interpolação Polinomial
7.1. Polinómio interpolador de Lagrange;
7.2. Polinómio interpolador de Newton;
7.3. Polinómio interpolador de Hermite;
7.4. Interpolação segmentada e interpolação inversa.
8. Derivação e Integração Numérica
8.1. Derivação Numérica;
8.2. Fórmulas de Newton-Cotes;
8.3. Regras do Trapézio e de Simpson simples;
8.4. Fórmulas do Trapézio e de Simpson compostas;
8.5. Fórmulas de Gauss.
Metodologia de avaliação
Por Frequência:
A avaliação por frequência consiste na realização de duas provas escritas (sem consulta), cada uma classificada de 0 a 10 valores, correspondentes a cada uma das duas partes anteriormente indicadas nos conteúdos programáticos. O aluno é dispensado de exame, ou seja, é aprovado por frequência, se obtiver um mínimo de 3 valores em cada uma das duas provas escritas e se obtiver uma classificação final igual ou superior a 10 valores, resultante da soma das classificações obtidas em cada uma das provas referidas.
Por Exame:
Se o aluno foi admitido a exame, ou foi dispensado, mas pretende melhorar a sua classificação, pode realizar o exame da época normal, que consistirá numa prova escrita (sem consulta), classificada de 0 a 20 valores, sobre toda a matéria lecionada. O enunciado desta prova será composto por duas partes, ambas classificadas de 0 a 10 valores, correspondentes a cada uma das partes anteriormente indicadas nos conteúdos programáticos. O aluno é aprovado se nesta prova obtiver um mínimo de 3 valores em cada uma das duas partes referidas e se obtiver uma classificação final igual ou superior a 10 valores, resultante da soma das classificações obtidas em cada uma das partes.
O exame da época de recurso consistirá numa prova escrita com as mesmas características e com as mesmas regras da prova da época normal.
Bibliografia
- Balakrishnan, V. (2010). Introductory Discrete Mathematics. New York: Dover Publications Inc
- Burden, R. e Faires, J. (1993). Numerical Analysis. (Vol. 1). New York: PWS Publishing Company
- Pina, H. (1995). Métodos Numéricos. .: McGraw-Hill
- Rosen, K. (1995). Discrete Mathematics and Its Applications. (Vol. 1). Brasil: Mc Graw-Hill
Método de Ensino
Aulas teórico-práticas em que se expõem e exemplificam as matérias respeitantes a cada um dos conteúdos programáticos e onde se estudam as implementações dos algoritmos leccionados.
Software utilizado nas aulas
Não aplicável.
Aprovado em Conselho Técnico Cientifico: Aprovada na Ata nº 24/2024 de 17/07
Download da Ficha da Unidade Curricular (FUC)