IPT Logotipo do IPT

Engenharia Mecânica

Análise Matemática III

<< voltar ao Plano Curricular

Publicação em Diário da República: Despacho nº 14312/2015 - 02/12/2015

5 ECTS; 2º Ano, 1º Semestre, 30,0 T + 30,0 TP + 4,50 OT , Cód. 912313.

Docente(s)
- Maria Helena Morgado Monteiro (1)(2)

(1) Docente Responsável
(2) Docente que lecciona

Pré-requisitos
Não aplicável.

Objetivos
Desenvolver e aplicar conhecimentos em cálculo diferencial e integral de funções com várias variáveis à formulação, análise e resolução de problemas relacionados com:
a) Integrais curvilíneos e integrais de superfície, em particular o efeito de campos vetoriais em partículas que se deslocam sobre curvas ou atravessam superfícies, respetivamente;
b) O comportamento de fenómenos físicos, económicos, demográficos ou outros, conhecidas taxas de variação e restrições desses fenómenos, modelados por equações ou sistemas de equações diferenciais.

Programa
1. Cálculo Vetorial
1.1. Funções vetoriais;
1.2. Integrais curvilíneos;
1.2.1. Definição, interpretação geométrica e cálculo do integral curvilíneo;
1.2.2. Integral curvilíneo de um campo vetorial - o trabalho realizado por um campo de forças;
1.2.3. Independência do caminho;
1.2.4. O Teorema de Green;
1.3. Integrais de Superfície
1.3.1. Definição e cálculo do integral de superfície de uma função escalar;
1.3.2. Definição, interpretação física e cálculo do integral de um campo vetorial sobre uma superfície orientada;
1.3.3. O Teorema da divergência;
1.3.4. O Teorema de Stokes.
2. Equações Diferenciais
2.1. Alguns modelos matemáticos, definições e terminologia;
2.2. Equações diferenciais de primeira ordem - equação de variáveis separáveis, equação homogénea, equação total exata, equação linear e equação de Bernoulli;
2.3. Equações diferenciais lineares de ordem n - equações homogéneas com coeficientes constantes e equações completas;
2.4. A Transformada de Laplace
2.4.1. Definição e algumas propriedades;
2.4.2. Transformada inversa;
2.4.3. Aplicação às equações diferenciais lineares de coeficientes constantes - problemas de valor inicial;
2.4.4. A função escalão unitário;
2.5. Sistemas de equações diferenciais lineares
2.5.1. Definições e resolução pelo método da eliminação;
2.5.2. Método dos operadores diferenciais;
2.5.3. Método da diagonalização da matriz dos coeficientes;
2.5.4. Método das transformadas de Laplace.

Metodologia de avaliação
Avaliação por frequência: Dois trabalhos escritos, duas apresentações e dois testes escritos, todos classificados de 0 a 20 valores. Um estudante é dispensado de exame se entregou os trabalhos, fez as apresentações, teve uma classificação superior a 4 valores em cada teste e a soma de 10% da média dos trabalhos e das apresentações com 90% da média dos testes é igual ou superior a 10 valores.
Avaliação por exame: uma prova escrita, classificada de 0 a 20 valores, sobre toda a matéria lecionada ou, na época normal, apenas sobre um dos capítulos, este último caso para os alunos que obtiveram 10 ou mais valores na prova de frequência relativa ao outro capítulo. O estudante é aprovado se obtiver, pelo menos, 10 valores na prova de exame.
Um estudante que obtenha uma classificação superior a 17 valores poderá ter de se submeter a uma avaliação extraordinária. Caso não a faça, ficará com 17 valores.

Bibliografia
- Larson, R. e Hostetler, R. e Edwards, B. (2006). Cálculo. (Vol. II). São Paulo: McGraw-Hill
- Monteiro, H. (2024). Apontamentos de Análise Matemática III. Abrantes: ESTA
- Mora, W. (2019). Cálculo en Varias Variables, Visualización interactiva. Costa Rica: Escuela de Matemática, Instituto Tecnológico de Costa Rica
- Ramos, M. (2011). Curso Elementar de Equações Diferenciais - Textos de Matemática. (Vol. 14). Lisboa: Departamento de Matemática da Faculdade de Ciências da Universidade de Lisboa
- Stewart, J. (2012). Calculus. Belmont, USA: Cengage Learning
- Zill, D. (2001). Equações Diferenciais. (Vol. I). São Paulo: Makron Books

Método de Ensino
Aulas teóricas (T) expositivas, onde se descreve e exemplificam aplicações dos princípios fundamentais, acompanhadas de análise e discussão; aulas TP onde o docente orienta os alunos no treino e na exploração de conhecimentos adquiridos nas aulas T.

Software utilizado nas aulas
Ferramentas de produtividade e Moodle.

 

Aprovado em Conselho Técnico Cientifico: 05 de dezembro de 2024

Download da Ficha da Unidade Curricular (FUC)

 

 


<< voltar ao Plano Curricular
NP4552
Financiamento
KreativEu
erasmus
catedra
b-on
portugal2020
centro2020
compete2020
crusoe
fct
feder
fse
poch
portugal2030
poseur
prr
santander
republica
UE next generation
Centro 2030
Lisboa 2020
Compete 2030
co-financiado