Publicação em Diário da República: Despacho nº 14312/2015 - 02/12/2015
5 ECTS; 2º Ano, 1º Semestre, 30,0 T + 30,0 TP + 4,50 OT , Cód. 912313.
Docente(s)
- Maria Helena Morgado Monteiro (2)
(1) Docente Responsável
(2) Docente que lecciona
Pré-requisitos
Conteúdos programáticos das unidades curriculares de Análise Matemática I e de Análise Matemática II.
Objetivos
Estender os conhecimentos em cálculo diferencial e integral à formulação, análise e resolução de problemas relacionados com:
a) Efeito de campos vetoriais em partículas que se deslocam em curvas ou superfícies;
b) Comportamento de fenómenos físicos, conhecidas taxas de variação e restrições.
Programa
1. Cálculo Vetorial
1.1. Funções vetoriais;
1.2. Integrais curvilíneos;
1.2.1. Definição, interpretação geométrica e cálculo do integral curvilíneo;
1.2.2. Integral curvilíneo de um campo vetorial ? o trabalho realizado por um campo de forças;
1.2.3. Independência do caminho;
1.2.4. O Teorema de Green;
1.3. Integrais de Superfície
1.3.1. Definição e cálculo do integral de superfície de uma função escalar;
1.3.2. Definição, interpretação física e cálculo do integral de um campo vetorial sobre uma superfície orientada;
1.3.3. O Teorema da divergência;
1.3.4. O Teorema de Stokes.
2. Equações Diferenciais
2.1. Alguns modelos matemáticos, definições e terminologia;
2.2. Equações diferenciais de primeira ordem - equação de variáveis separáveis, equação homogénea, equação total exata, equação linear e equação de Bernoulli;
2.3. Equações diferenciais lineares de ordem n - equações homogéneas com coeficientes constantes e equações completas;
2.4. A Transformada de Laplace
2.4.1. Definição e algumas propriedades;
2.4.2. Transformada inversa;
2.4.3. Aplicação às equações diferenciais lineares de coeficientes constantes ? problemas de valor inicial;
2.4.4. A função escalão unitário;
2.5. Sistemas de equações diferenciais lineares
2.5.1. Definições e resolução pelo método da eliminação;
2.5.2. Método dos operadores diferenciais;
2.5.3. Método da diagonalização da matriz dos coeficientes;
2.5.4. Método das transformadas de Laplace.
Metodologia de avaliação
Avaliação periódica: duas provas escritas (0 a 20 valores), cada uma com nota mínima de 6 valores;
Avaliação final: uma prova escrita (0 a 20 valores).
O aluno é aprovado com 10 valores no exame ou na média das provas da avaliação periódica.
Bibliografia
- Larson, R. e Hostetler, R. e Edwards, B. (2006). Cálculo. (Vol. II). São Paulo: McGraw-Hill
- Monteiro, H. (2016). Apontamentos de Análise Matemática III. Abrantes: ESTA
- Stewart, J. (2002). Cálculo. (Vol. II). São Paulo: Pioneira Thomson Learning
- Zill, D. (2001). Equações Diferenciais. (Vol. I). São Paulo: Makron Books
Método de Ensino
Aulas teóricas (T) expositivas, onde se descreve e exemplificam as aplicações dos princípios fundamentais, acompanhadas de análise e discussão; aulas TP onde o docente orienta os alunos no treino e na exploração de conhecimentos adquiridos na aulas T
Software utilizado nas aulas
Não aplicável.