

Escola Superior de Tecnologia de Tomar

Ano Letivo 2017/2018

Engenharia Informática

Licenciatura, 1º Ciclo

Plano: Despacho n.º16228/2009 - 15/07/2009

Ficha da Unidade Curricular: Álgebra

ECTS: 6; Horas - Totais: 160.0, Contacto e Tipologia, T:28.0; TP:42.0; OT:5.0;

Ano|Semestre: 1|S1; Ramo: Tronco Comum;

Tipo: Obrigatória; Interação: Presencial; Código: 91192;

Área Científica: Matemática

Docente Responsável

Carlos Filipe Perquilhas Baptista; Equiparado Assistente 2º Triénio

Docente e horas de contacto

Carlos Filipe Perquilhas Baptista;

Equiparado Assistente 2º Triénio, T: 28.0; TP: 42.0; OT: 5.0

Objetivos de Aprendizagem

- 1. Aquisição de conhecimentos no domínio da Álgebra Linear e da Geometria Analítica;
- Dotar os alunos de ferramentas algébricas necessárias à modelação e à resolução de problemas relacionados com as engenharias;
- 3. Desenvolvimento da capacidade de raciocínio lógico, analítico e crítico.

Objetivos de Aprendizagem (detalhado)

- 1-a) operar com números complexos;
- 1-b) operar com matrizes;
- 1-c) discutir e resolver sistemas de equações lineares, utilizando os diversos métodos estudados;
- 1-d) calcular determinantes, estudar as suas propriedades e utilizá-los em diversas aplicações;
- 1-e) definir e determinar valores e vetores próprios de matrizes e discutir diagonalização de matrizes;
- 1-f) compreender a noção de (sub)espaço vetorial e utilizar técnicas vetoriais na resolução de problemas;
- 1-g) definir produtos interno, externo e misto em espaços vetoriais, assim como estudar as suas propriedades e aplicações;
- 1-h) definir e identificar geométrica e analiticamente retas e planos;
- 2. utilizar técnicas matriciais e vetoriais em problemas no âmbito do curso em questão;
- 3. desenvolver o raciocínio matemático, lógico, analítico e crítico que permita a criação de autonomia na aprendizagem para a resolução de problemas.

Conteúdos Programáticos

- Números complexos;
- II. Matrizes e sistemas de equações lineares;

ipt Instituto Politécnico de Tomar

- III. Determinantes e sua aplicação à resolução de sistemas de equações lineares e à inversão de uma matriz quadrada;
- IV. Espaços vetoriais reais;
- V. Valores e vetores próprios. Aplicação à diagonalização de matrizes;
- VI. Noções de geometria analítica.

Conteúdos Programáticos (detalhado)

- I. NÚMEROS COMPLEXOS
 - 1.1. Forma algébrica e trigonométrica;
 - 1.2. Potências e raízes;
 - 1.3. Fórmulas de De Moîvre
- II. MATRIZES E SISTEMAS DE EQUAÇÕES LINEARES
 - 2.1. Noções gerais. Alguns tipos particulares de matrizes;
 - 2.2. Operações com matrizes e propriedades;
 - 2.3. Operações elementares. Característica de uma matriz;
 - 2.4. Sistemas de equações lineares:
 - 2.4.1. Representação matricial de um sistema de equações lineares;
 - 2.4.2. Classificação e discussão de um sistema de equações lineares por recurso ao teorema de Rouché;
 - 2.4.3. Resolução de sistemas de equações lineares por recurso ao método de eliminação de Gauss-Jordan;
 - 2.5. Inversão de matrizes:
 - 2.5.1. Matrizes singulares e não-singulares;
 - 2.5.2. Inversão de uma matriz não-singular por recurso ao método de Gauss-Jordan;
 - 2.6. Decomposição PTLU:
 - 2.6.1. Matrizes elementares e matrizes de permutação;
 - 2.6.2. Decomposição PTLU de uma matriz;
 - 2.6.3. Resolução de sistemas de equações lineares usando a decomposição P^TLU da matriz dos coeficientes do sistema.
- III. DETERMINANTES E SUA APLICAÇÃO À RESOLUÇÃO DE SISTEMAS DE EQUAÇÕES LINEARES E À INVERSÃO DE UMA MATRIZ QUADRADA
 - 3.1. Definição. Regra dos produtos cruzados para o cálculo de determinantes de 2ª ordem;
 - 3.2. Teorema de Laplace;
 - 2.2.1. Menor complementar e complemento algébrico de um elemento de uma matriz quadrada;
 - 2.2.2. Cálculo do determinante de uma matriz quadrada por recurso ao teorema de Laplace;
 - 3.3. Algumas propriedades dos determinantes;
 - 3.4. Cálculo da inversa de uma matriz não-singular a partir da sua matriz adjunta;
 - 3.5. Aplicação dos determinantes aos sistemas de equações lineares. Regra de Cramer.
- IV. ESPAÇOS VETORIAIS REAIS
 - 4.1. Introdução. Definição e exemplos de espaços vetoriais;

ipt Instituto Politécnico de Tomar

- 4.2. Subespaços vetoriais;
- 4.3. Combinações lineares de vetores;
- 4.4. Subespaço gerado por um conjunto de vetores;
- 4.5. Dependência e independência linear de vetores;
- 4.6. Bases e dimensão de um espaço vetorial;
- 4.7. Espaço-linha e espaço-coluna de uma matriz.

V. VALORES E VETORES PRÓPRIOS. APLICAÇÃO À DIAGONALIZAÇÃO DE MATRIZES

- 5.1. Valores e vetores próprios de matrizes quadradas: definições, polinómio característico e multiplicidade algébrica de um valor próprio;
- 5.2. Subespaço próprio associado a um valor próprio e multiplicidade geométrica de um valor próprio;
- 5.3. Cálculo de valores e vetores próprios;
- 5.4. Propriedades dos valores próprios;
- 5.5. Matrizes diagonalizáveis. Determinação de uma matriz diagonalizante e diagonalização de uma matriz.

VI. NOÇÕES DE GEOMETRIA ANALÍTICA

- 6.1. Produto interno de vetores: definição e propriedades;
- 6.2. Produto externo e produto misto: definição, propriedades, aplicações ao cálculo da área de um paralelogramo e ao volume de um paralelepípedo;
- 6.3. Representação analítica da reta;
- 6.4. Representação analítica do plano.

Metodologias de avaliação

Avaliação contínua: dois testes escritos sem consulta, cada um cotado para 10 valores e com nota mínima de 3 valores em cada teste. Avaliação por exame: um teste escrito sem consulta, cotado para 20 valores, sobre toda a matéria lecionada.

Software utilizado em aula

Não aplicável.

Estágio

Não aplicável.

Bibliografia recomendada

- Amaral, I. e Ferreira, M. (2009). Álgebra Linear: Espaços Vetoriais e Geometria Analítica. (Vol. 2º). (pp. 1-160). Portugal: Edições Sílabo;
- Amaral, I. e Ferreira, M. (2008). Álgebra Linear: Matrizes e Determinantes. (Vol. 1º). (pp. 1-240).
 Portugal: Edições Sílabo;
- Giraldes, E. e Smith, P. (1995). Curso de Álgebra Linear e Geometria Analítica. Lisboa: McGraw-Hill;
- Leon, S. (2009). Linear Algebra with Applications. (pp. 1-552). USA: Pearson.

1 Company of the second of the

Coerência dos conteúdos programáticos com os objetivos

Os objetivos referidos no ponto 1 são concretizados do seguinte modo: nos capítulos I, II, III e V fornecem-se conhecimentos básicos de teoria de matrizes e de determinantes com vista à sua aplicação na resolução de sistemas de equações lineares, assim como conhecimentos sobre valores e vetores próprios. No capítulo IV desenvolve-se a teoria de espaços vetoriais, indispensável ao estudo das aplicações geométricas em IR² e IR³ que constam no capítulo VI. Os objetivos referidos nos pontos 2 e 3 são concretizados ao longo de todos os capítulos dos conteúdos programáticos com a ilustração de exemplos de aplicação às engenharias.

Metodologias de ensino

Aulas teóricas e teórico-práticas, em que se expõem e exemplificam as matérias respeitantes a cada um dos conteúdos programáticos.

Coerência das metodologias de ensino com os objetivos

Os métodos de ensino serão predominantemente expositivos nas aulas teóricas, fazendo prevalecer uma forte interação entre os conceitos e as suas aplicações. As aulas teórico-práticas são destinadas à resolução de exercícios sob orientação do professor. A transformação dos conceitos em ferramentas de trabalho será atingida pelo incentivo ao trabalho pessoal. O ensino da unidade curricular é complementado pelos períodos de atendimento aos alunos.

Língua de ensino

Português.

Pré requisitos

Não aplicável.

Programas Opcionais recomendados

Não aplicável.

Observações

Para uma correta aprendizagem da Unidade Curricular recomenda-se conhecimentos básicos de cálculo algébrico.

Docente Responsável

Carlos Filipe

Assinado de forma digital por Carlos Filipe Perquilhas Baptista Dados: 2017.09.26 12:35:25

Perquilhas Baptista Pados: 2017.09.26 12:35:25

Diretor de Curso, Comissão de Curso

Conselho Técnicó Científico

Homologado pelo C.T.C.

Acta n.º 12 nata 19

4