

INSTITUTO POLITÉCNICO DE TOMAR

Escola Superior de Tecnologia de Tomar

Área Interdepartamental de Matemática

Curso de Engenharia Química Industrial

DISCIPLINA DE ANÁLISE MATEMÁTICA I

1º Ano

Regime: Semestral (1°)

Ano Lectivo: 2003/2004

Carga Horária: 2T+3P

Docente das Aulas Teóricas: Mestre Maria Cristina Oliveira da Costa (Prof.º Adjunta)

Docente das Aulas Práticas: Mestre Lígia Carla Henriques Rodrigues (Prof.* Adjunta)

OBJECTIVOS

Proporcionar, aos alunos, os fundamentos básicos dos métodos matemáticos, normalmente utilizados pelas diversas disciplinas do curso de Engenharia Química Industrial.

Conferir, aos alunos, capacidade para utilizar os conceitos e os métodos próprios do cálculo diferencial e integral de funções reais de uma variável real.

O programa proposto foi elaborado tomando como base de referência os conhecimentos adquiridos, pelos alunos, nos cursos que antecedem a sua entrada neste curso.

PROGRAMA

1 Números Reais

- 1.1 Conjuntos.
- 1.2 Primeiras propriedades dos números reais.
- 1.3 Conjuntos limitados. Breves noções de topologia em IR.
- 1.4 Potências e logaritmos.
- 1.5 Trigonometria rectilínea.
- 1.6 Trigonometria hiperbólica.

2 Funções reais de uma variável real

- 2.1 Definição.
- 2.2 Gráfico.
- 2.3 Funções injectivas e sobrejectivas.
- 2.4 Composição de funções.

Olosk

- 2.5 Funções inversas.
- 2.6 Supremo e ínfimo de uma função.
- 2.7 Funções monótonas.
- 2.8 Funções limitadas.
- 2.9 Funções pares e impares.
- 2.10 Funções periódicas.
- 2.11 Algumas classes de funções:
 - 2.11.1 Funções polinomiais, racionais e irracionais;
 - 2.11.2 Funções trigonométricas directas e inversas;
 - 2.11.3 Função exponencial e função logarítmica;
 - 2.11.4 Funções $f(x)^{g(x)}$;
 - 2.11.5 Funções hiperbólicas directas e inversas.

3 Limites e Continuidade

- 3.1 Noção de limite.
- 3.2 Definição de limite.
- 3.3 Limites laterais.
- 3.4 Teoremas sobre o cálculo de limites.
- 3.5 Indeterminações no cálculo de limites.
- 3.6 Definição de continuidade,
- 3.7 Teoremas sobre continuidade.

4 Cálculo Diferencial

- 4.1 Definição de derivada.
- 4.2 Interpretação geométrica da definição de derivada.
- 4.3 Diferenciabilidade e Continuidade.
- 4.4 Regras de derivação.
- 4.5 Derivada da função implícita.
- 4.6 Derivada de funções definidas na forma paramétrica.
- 4.7 Derivada da função inversa.
- 4.8 Derivada da função composta.
- 4.9 Derivadas sucessivas.
- 4.10 Propriedades de funções contínuas e deriváveis: teorema de Bolzano, teorema de Weierstrass, teorema de Rolle, teorema de Lagrange e seus corolários.
- 4.11 Teorema de Cauchy.
- 4.12 Regra de Cauchy e regra de L'Hôpital.
- 4.13 Indeterminações no cálculo de limites.

Olosk

- 4.14 Aplicações das derivadas ao estudo gráfico de funções.
- 4.15 Máximos e mínimos.
- 4.16 Concavidade e convexidade de uma função.
- 4.17 Pontos de inflexão.
- 4.18 Assimptotas verticais, horizontais e oblíquas.
- 4.19 Estudo completo de uma função.
- 4.20 Acréscimos e diferenciais. Definição e interpretação geométrica.

5 Cálculo Integral

- 5.1 Primitivas.
- 5.2 Regras de integração.
- 5.3 Integração por partes.
- 5.4 Integração por substituição.
- 5.5 Integração de funções racionais.
- 5.6 Integração de potências de funções trigonométricas.
- 5.7 Integral definido.
- 5.8 Teorema fundamental do cálculo.
- 5.9 Propriedades do integral definido.
- 5.10 Aplicações do cálculo integral: áreas e volumes.
- 5.11 Integrais impróprios.

BIBLIOGRAFIA

- [1] Jaime Carvalho e Silva; "Princípios de Análise Matemática Aplicada". Mc Graw-Hill.
- [2] Swokowski, E. W.; "Cálculo com Geometria Analítica". Mc Graw-Hill.
- [3] Piskounov, N; "Cálculo Diferencial e Integral". Edições Lopes da Silva, Porto.
- [4] Simmons, G. F.; "Cálculo com Geometria Analítica". Mc Graw-Hill.

Olosk

AVALIAÇÃO

Por frequência:

- A avaliação por frequência consiste na realização de três provas escritas. A primeira destas provas é classificada de 0 a 4 valores, sendo as duas restantes classificadas de 0 a 8 valores. Todos os alunos estão admitidos à segunda prova mas é necessário que o aluno tenha, pelo menos, 3 valores na segunda para ser admitido à terceira. O aluno é dispensado de exame, ou seja, é aprovado por frequência se tiver, pelo menos, 3 valores em cada uma das duas últimas provas e obtiver classificação superior ou igual a 10 valores, resultante da soma dos 3 testes.
- Os alunos que entrarem na 2ª e na 3ª fases poderão não realizar a primeira prova. Neste caso, ambas as provas serão classificadas de 0 a 10 valores e é necessário que o aluno tenha, pelo menos, 3,5 valores na segunda para ser admitido à terceira. O aluno é dispensado de exame, ou seja, é aprovado por frequência se tiver, pelo menos, 3,5 valores em cada uma das duas últimas provas e obtiver classificação superior ou igual a 10 valores, resultante da soma dos 2 testes.

Por exame:

- Se o aluno foi admitido a exame, ou foi dispensado mas pretende melhorar a sua classificação, pode fazer o exame da época normal – uma prova escrita (classificada de 0 a 20 valores) sobre toda a matéria leccionada. Se, nesta prova, o aluno obtiver uma classificação superior ou igual a 10 valores, é aprovado.
- Se o aluno reprovou no exame da época normal, pode propor-se ao exame da época de recurso – prova com as mesmas normas da época normal- que decorrerá em Setembro.

NOTA:

 Para qualquer das avaliações, se o aluno obtiver classificação igual ou superior a 17 valores deverá ser sujeito a uma avaliação extraordinária.

As datas previstas para as provas de avaliação são:

AVALIAÇÃO	DATA
1ª Avaliação	25 OUT 2003
2ª Avaliação	DEZ 2003
3ª Avaliação	22 JAN 2004
Exame	05 FEV 2004
Exame de Recurso	18 FEV 2004

No início de cada época de avaliação os alunos devem confirmar estas datas.

Navia Ovitina Ulvernada Costy