

Escola Superior de Tecnologia de Tomar

Mestrado em Tecnologia Química

Mestrado, 2º Ciclo

Plano: Despacho nº 9183/2020 - 25/09/2020

Ficha da Unidade Curricular: Engenharia de Bioprocessos

ECTS: 6; Horas - Totais: 162.0, Contacto e Tipologia, T:30.0; TP:14.0; PL:16.0;

Ano | Semestre: 2 | S1

Tipo: Obrigatória; Interação: Presencial; Código: 300111

Área Científica: Tecnologia Química

Docente Responsável

Dina Maria Ribeiro Mateus Professor Coordenador

Docente(s)

Dina Maria Ribeiro Mateus Professor Coordenador

Objetivos de Aprendizagem

Desenvolvimento de competências para execução de técnicas de biologia molecular em biotecnologia industrial. Compreender e acompanhar técnicas analíticas e operações unitárias em processos industriais de biocatálise e fermentação. Aplicar regras de higiene e segurança em biotecnologia.

Objetivos de Aprendizagem (detalhado)

A unidade curricular tem como objetivos o estudo e o desenvolvimento de competências nas áreas da biologia molecular, enzimologia, processos de biocatálise e fermentativos bem como na aplicação de critérios de dimensionamento e scale-up de biorreactores, e ainda de regras de higiene e segurança em biotecnologia.

Depois de concluída a UC com sucessos os alunos deverão ser capazes de:

- (a) Executar técnicas de biologia molecular, compreender as principais metodologias da clonagem e análise de genes e seus produtos, no âmbito da tecnologia de DNA recombinante com hospedeiros procariotas;
- (b) Aplicar técnicas envolvendo enzimas e biocatalisadores imobilizados; compreender e

Ano letivo: 2024/2025

acompanhar operações unitárias em processos industriais envolvendo enzimas/biocatalisadores;

(c) Acompanhar o desenvolvimento e aplicação de técnicas de dimensionamento e de operação de fermentadores em processos industriais.

Conteúdos Programáticos

Introdução à biotecnologia moderna e tradicional.

Estratégias e metodologias utilizadas na clonagem e análise de genes e seus produtos, no âmbito da tecnologia de ADN recombinado.

Biocatálise aplicada. Cinética das enzimas livres e imobilizadas.

Biotecnologia microbiana. Processos fermentativos. Reatores biológicos ideais. Casos práticos de aplicação de processos de engenharia biológica.

Conteúdos Programáticos (detalhado)

Aulas T

- 1. Introdução à biotecnologia moderna e tradicional: Biotecnologia microbiana; Biocatálise aplicada; Segurança e regulamentação em biotecnologia.
- 2. Engenharia Genética: Clonagem de genes; Enzimas relevantes em clonagem; Vetores de clonagem; Marcas de seleção; Exemplo típico de clonagem; Introdução de DNA recombinado na célula hospedeira.
- 3. Biocatálise Aplicada: Imobilização e comportamento de biocatalisadores; Cinética das enzimas livres; Cinética das enzimas imobilizadas; Reatores para biocatalisadores imobilizados; processos de separação de produtos biológicos; exemplos de processos que envolvem biocatálise.
- 4. Biorreactores Fermentadores: Modelação do crescimento microbiano; Tipos de reatores biológicos; Reatores de alta densidade celular; processos de separação da biomassa celular. Exemplos de processos fermentativos.

Aulas TP e PL

Realização de exercícios de aplicação da matéria dada nas aulas teóricas.

Realização de trabalhos laboratoriais:

TP1 – Purificação, concentração e quantificação de DNA cromossómico de uma estirpe de Escherichia coli

TP2 - Demonstração de métodos de imobilização de biocatalisadores.

TP3 – Monitorização de um reator biológico para tratamento de águas residuais à escala piloto.

Metodologias de avaliação

Teste escrito em frequência ou nas épocas de exame (60%), apresentação e discussão de trabalhos de pesquisa bibliográfica (15%) e relatórios dos trabalhos laboratoriais (25%). Classificação mínima de 10 valores em cada componente.

Software utilizado em aula

Não aplicável.

Estágio

Não aplicável.

Bibliografia recomendada

- Videira, A. (2011). Engenharia Genética Princípios e Aplicações (Princípios básicos Cap I a VIII),.. 2ª, Lidel-Edições Técnicas. Lisboa
- Doran, P. (2012). Bioprocess Engineering Principles.. 2ª, Academic Press. London
- Kargi, F. e Shuler, M. (2021). *Bioprocess Engineering Basic Concepts.*. 3ª, Pearson Education. London
- Lima, N. e Mota, M. e , . (2003). Biotecnologia Fundamentos e Aplicações.. 1ª, Lidel-Edições Técnicas. Lisboa
- Mateus, D. (0). Apontamentos das aulas teóricas, enunciados dos exercícios propostos. Protocolos laboratoriais. Acedido em10 de setembro de 2024 em www.e-learning.ipt.pt

Coerência dos conteúdos programáticos com os objetivos

O programa cobre os diferentes objetivos e competências específicas que se pretendem proporcionar na unidade curricular, de acordo com a correspondência seguinte: os conteúdos dos capítulos 1 e 2 permitem atingir os objetivos e competências identificados com (a); os conteúdos dos capítulos 1 e 3 permitem atingir os objetivos e competências identificados com (b); os conteúdos dos capítulos 1 e 4 permitem assegurar os objetivos e competências identificados com (c).

Metodologias de ensino

Aulas teóricas e expositivas, onde se descreve e exemplifica a aplicação dos princípios fundamentais. Aulas laboratoriais em que são realizados trabalhos laboratoriais e aulas práticas em que é proposta a resolução de casos práticos e exercícios.

Coerência das metodologias de ensino com os objetivos

A metodologia de ensino, baseada em exposição oral permite, numa primeira fase, fazer uma introdução à engenharia de bioprocessos à sua importância na sociedade atual e sensibilizar para as questões de segurança e regulamentação. Permite também a aquisição de conhecimentos teóricos de biologia molecular, tecnologia das fermentações e biocatálise aplicada. A realização do trabalho de pesquisa bibliográfica sobre casos de aplicação da engenharia de bioprocessos, permite completar o desenvolvimento das competências definidas nos objetivos da unidade curricular e estimular o trabalho autónomo. A realização de exercícios práticos facilita a consolidação dos conhecimentos anteriormente adquiridos e a prática de competências ao nível da interpretação dos problemas e da estruturação de um raciocínio que permita obter a solução desses problemas. Os exercícios propostos para resolução pelos alunos, quer nas aulas teórico-práticas quer em trabalho autónomo, foram concebidos com base na bibliografia citada e de forma a incluir todo o programa.

A realização dos trabalhos laboratoriais: "Purificação, concentração e quantificação de DNA

cromossómico de uma estirpe de Escherichia coli", contempla os objetivos de aprendizagem (a); "Demonstração de métodos de imobilização de biocatalisadores", contempla os objetivos de aprendizagem (b); "Monitorização de um reator biológico para tratamento de águas residuais à escala piloto", os objetivos de aprendizagem (c).

A realização de exercícios, a execução de trabalhos laboratoriais e o trabalho de pesquisa bibliográfica permitem o desenvolvimento das competências definidas nos objetivos da unidade curricular e representam a matriz que relacionam esses objetivos com a metodologia de ensino.

ì							
1	l ir	nn	ua	de	01	120	no

Português

Pré-requisitos

Não aplicável.

Programas Opcionais recomendados

Não aplicável.

Observações

Objetivos de Desenvolvimento Sustentável:

- 4 Garantir o acesso à educação inclusiva, de qualidade e equitativa, e promover oportunidades de aprendizagem ao longo da vida para todos;
- 6 Garantir a disponibilidade e a gestão sustentável da água potável e do saneamento para todos;
- 7 Garantir o acesso a fontes de energia fiáveis, sustentáveis e modernas para todos:
- 9 Construir infraestruturas resilientes, promover a industrialização inclusiva e sustentável e fomentar a inovação:
- 12 Garantir padrões de consumo e de produção sustentáveis;
- 13 Adotar medidas urgentes para combater as alterações climáticas e os seus impactos;

Docente responsável

Dina Maria

Assinado de forma digital por Dina Maria Ribeiro Mateus Ribeiro Mateus

Homologado pelo C.T.C.