

X Escola Superior de Tecnologia de Abrantes

TeSP - Manutenção de Sistemas Mecatrónicos

Técnico Superior Profissional

Plano: Despacho n.º 11230/2020 de 13/11/2020 + Despacho n.º 7089/2023 de

03/07/2023

Ficha da Unidade Curricular: Electrónica Aplicada

ECTS: 7; Horas - Totais: 189.0, Contacto e Tipologia, T:15.0; TP:30.0; PL:30.0; OT:3.0;

Ano letivo: 2023/2024

Ano | Semestre: 1 | S2

Tipo: Obrigatória; Interação: Presencial; Código: 612111 Área de educação e formação: Electrónica e automação

Docente Responsável

Francisco José Alexandre Nunes Professor Adjunto

Docente(s)

Francisco José Alexandre Nunes Professor Adjunto

Objetivos de Aprendizagem

Os alunos aprovados nesta UC devem conseguir utilizar as ferramentas bem como conhecer e saber aplicar os conceitos fundamentais necessários para a análise e o desenvolvimento de circuitos eletrónicos simples.

Objetivos de Aprendizagem (detalhado)

Os alunos aprovados nesta UC devem conseguir utilizar as ferramentas bem como conhecer e saber aplicar os conceitos fundamentais necessários para a análise e o desenvolvimento de circuitos eletrónicos simples, com particular ênfase nas seguintes perspetivas:

- 1. Analisar circuitos com AmpOps, diodos e transístores
- 2. Projetar fontes de alimentação simples
- 3. Utilizar transístores em comutação e como amplificadores
- 4. Compreender o funcionamento de circuitos digitais
- 5. Detetar e reparar avarias nos circuitos.

Conteúdos Programáticos

- 1. Sistemas Digitais
- 2. Osciloscópio e gerador de sinais
- 3. AmpOp Amplificador Operacional
- 4. Introdução à teoria dos semicondutores
- 5. Diodo
- 6. TJB Transistor de Junção Bipolar
- 7. Transistor de Efeito de Campo
- 8. Osciladores
- 9. Fontes de alimentação

Conteúdos Programáticos (detalhado)

- 1. Sistemas Digitais
- 1.1. Sistemas de numeração
- 1.2. Álgebra de Boole
- 1.3. Circuitos lógicos combinatórios
- 1.4. Tecnologia dos circuitos digitais e famílias lógicas
- 1.5. Circuitos sequenciais
- 1.6. Registos e contadores
- 2. Osciloscópio e gerador de sinais
- 2.1. Caracterização de sinais elétricos periódicos no tempo
- 2.2. Osciloscópio: descrição e utilização dos principais comandos
- 2.3. Pontas de prova
- 2.4. Gerador de sinais: descrição e utilização dos principais comandos
- 2.5. Placa de ligações "bread.board"
- 3. AmpOp Amplificador Operacional
- 3.1. Tensões e Correntes nos Terminais do AmpOp
- 3.2. Montagem não-inversora
- 3.3. Seguidor de tensão
- 3.4. Montagem inversora
- 3.5. Montagens somadoras
- 3.6. Amplificador de diferença
- 3.7. Comparador
- 4. Introdução à teoria dos semicondutores
- 4.1. Bandas de energia
- 4.2. Semicondutores intrínsecos
- 4.3. Semicondutores extrínsecos do tipo N e do tipo P
- 4.4. Junção P-N
- 4.5. Estruturas NPN e PNP
- 4.6. Estrutura interna dos transístores de efeito de campo
- 5. Diodo
- 5.1. Característica tensão-corrente do diodo
- 5.2. Regiões de operação
- 5.3. Reta de carga

- 5.4. Polarização
- 5.5. Funções lógicas com diodos
- 5.6. Retificadores
- 5.7. Retificadores com filtragem capacitiva
- 5.8. Diodos especiais: Zener, LED, Schottky
- 5.9. Reguladores de tensão
- 5.10. Limitadores
- 6. TJB Transistor de Junção Bipolar
- 6.1. Símbolos e grandezas associadas
- 6.2. Regiões de operação
- 6.3. Polarização: montagens de base comum e de emissor comum
- 6.4. Amplificador de emissor comum
- 6.5. Polarização estabilizada
- 6.6. Operação em comutação
- 7. Transistor de Efeito de Campo
- 7.1. MOSFET
- 7.1.1. Símbolos e grandezas associadas
- 7.1.2. Regiões de operação
- 7.1.3. Polarização: montagem de fonte comum
- 7.1.4. Polarização estabilizada
- 7.1.5. Tecnologia CMOS
- 7.2. JFET
- 7.2.1. Símbolos e grandezas associadas
- 7.2.2. Regiões de operação
- 8. Osciladores
- 8.1. Regimes transitórios em circuitos de 1ª e de 2ª ordem
- 8.2. Osciladores sinusoidais
- 8.2.1. Realimentação
- 8.2.2. Osciladores RC com AmpOp e com transistor
- 8.2.3. Osciladores LC com AmpOp, com transistor e com cristal de quartzo
- 8.3. Multivibradores: monostável e astável
- 8.3.1. Multivibrador astável com AmpOp, com portas lógicas e com cristal de quartzo
- 8.3.2. Circuito integrado 555: utilização como monostável e como astável
- 8.3.3. PWM Modulador de largura de impulso
- 9. Fontes de alimentação
- 9.1. Conversores de potência
- 9.2. Regulador de tensão série
- 9.3. Reguladores integrados 78XX e 79XX
- 9.4. Conversores comutados a alta frequência
- 9.4.1. Conversores DC/DC elementares
- 9.4.2. Conversores isolados
- 9.4.3. Onduladores
- 9.5. UPSs

Metodologias de avaliação

Nota final: NF=CT*60%+CP*40%

(mín. 10 val.)

Componente teórica: CT = AC ou EF

(mín. 9 val.)

avaliação contínua: AC=TE*2/3+TI*1/3

TE (5 ou 6 testes: mín. 8 val.); TI (8 a 10 trabalhos individuais)

exame final: EF

Componente prática: CP (6 a 8 trabalhos práticos - LABs: mín. 10 val.)

Software utilizado em aula

Logisim Evolution Simulador Digital 097 **LTSpice**

Estágio

Não aplicável

Bibliografia recomendada

- Amaral, A. (2021). Eletrónica Aplicada.. 1ª, Edições Sílabo, Lda.. Lisboa
- Dias, M. (2013). Sistemas Digitais Princípios e prática. (Vol. 1).. 1, FCA. Lisboa
 Nunes, F. (0). Eletrónica Aplicada CTeSP MSM (apresentações das aulas, folhas de exercícios e guias de laboratório). Acedido em19 de fevereiro de 2024 em https://politecnicotomar.sharepoint.com/:f:/r/teams/EA-MSM202324/Material%20de%20Aula/Apresenta%C3%A7%C3 - Silva, M. (2016). Circuitos com Transístores Bipolares e MOS.. 6ª, Fundação Calouste Gulbenkian, Lisboa

Coerência dos conteúdos programáticos com os objetivos

Os objetivos de aprendizagem são assegurados através da seguinte correspondência com os capítulos dos conteúdos programáticos:

- 1. Caps. 2,3,4,5,6 e 7
- 2. Caps. 3,5,6,7,8 e 9
- 3. Caps. 6 e 7
- 4. Cap. 1
- 5. A deteção de falhas e avarias nos circuitos é uma atividade transversal a todos os capítulos (à exceção do Cap. 4), sempre presente nas atividades laboratoriais. Nesse sentido, é também explorada a prática da utilização de software de simulação de circuitos analógicos (LTSpice -Caps. 2, 3, 5, 6, 7, 8 e 9) e de circuitos digitais (Logisim e Simulador Digital 097 – Cap. 1).

Metodologias de ensino

Aulas teóricas expositivas. Aulas teórico-práticas com resolução de exercícios. Aulas práticas laboratoriais onde são montados, testados e simulados circuitos que exemplificam a aplicação dos conceitos estudados nas aulas teóricas e teórico-práticas.

Coerência das metodologias de ensino com os objetivos

A compreensão e a utilização das principais técnicas de análise de circuitos eletrónicos decorre da assimilação dos conceitos fundamentais, apresentados nas aulas teóricas de exposição oral e desenvolvidos nas aulas teórico-práticas de resolução de problemas, e das práticas laboratorial e de simulação, desenvolvidas nas aulas práticas laboratoriais, através das quais são consolidadas as aprendizagens. Privilegiou-se uma abordagem mais orientada para a prática, por ser a mais adequada a este nível de ensino e a que permite manter os estudantes mais motivados.

Língua de ensino
Português
Pré-requisitos
Não aplicável
Programas Opcionais recomendados
Não aplicável
Observações
Objetivos de Desenvolvimento Sustentável:
7 - Garantir o acesso a fontes de energia fiáveis, sustentáveis e modernas para todos;
Docente responsável