

Escola Superior de Tecnologia de Tomar

Ano letivo: 2021/2022

Conservação e Restauro

Licenciatura, 1º Ciclo

Plano: Despacho n.º 10852/2016 - 05/09/2016

Ficha da Unidade Curricular: Química 2

ECTS: 4.5; Horas - Totais: 121.50, Contacto e Tipologia, T:30.0; TP:30.0; OT:2.0;

Ano | Semestre: 1 | S2

Tipo: Obrigatória; Interação: Presencial; Código: 938012

Área Científica: Física e Química

Docente Responsável

Manuel Alberto Nogueira Henriques Rosa

Professor Adjunto

Docente(s)

Manuel Alberto Nogueira Henriques Rosa

Professor Adjunto

Objetivos de Aprendizagem

Compreender os fundamentos e mecanismos dos equilíbrios ácido-base, redox e de coordenação e identificar a ocorrência destes equilíbrios no Património e na Conservação e Restauro.

Conteúdos Programáticos

Equilíbrio Químico;

Ácidos e bases;

Complexos metálicos;

Oxidação e redução.

Componente prática

Trabalhos práticos de laboratório

Conteúdos Programáticos (detalhado)

Equilíbrio químico: Noções gerais de equilíbrio químico; A constante de equilíbrio; O equilíbrio heterogéneo; O quociente da reacção; Factores que afectam o equilíbrio; Equilíbrios de solubilidade; Equilíbrios de ácido-base; Equilíbrios de complexação.

Equilíbrio iónico (Ácido-base): Sistemas de ácidos Bronstead-Lowry; A autoionização da água; Cálculo das concentrações do ião hidrogénio e do ião hidróxido; Critérios para as soluções ácidas, básicas e neutras; O conceito de pH; Soluções de ácidos e bases fortes; Medição de pH; Exemplificação de medição do pH de soluções com medidor de pH, e indicadores universais. Equilíbrio de Complexação: História; Conceitos gerais sobre compostos de coordenação e complexos; Equilíbrio de formação de complexos; Complexantes mais comuns na prática de CR; Conclusão.

Oxidação-redução: Estado de Oxidação-redução; Conceitos de oxidação-redução; escrita e acerto de semi-reacções redox; escrita de uma reacção redox completa; Oxidante e redutor; Oxidação e redução em compostos orgânicos; Potencial de redução; Células galvânicas ou voltaicas; Células electrolíticas; Corrosão dos metais; Limpeza química por mecanismos redox; Considerações finais.

Metodologias de avaliação

A avaliação contínua consiste em quatro testes escritos (T1, T2, T3 e T4) e num relatório de um trabalho prático de laboratório (P), todos classificados de 0 a 20 valores. A nota final resulta da média das cinco avaliações e tem que ser igual ou superior a 10 valores para aprovação.

Nota final avaliação contínua=(T1+T2+T3+T4+P)/5

A presença na aula prática de laboratório é obrigatória, bem como a redacção em grupo do relatório do trabalho prático executado.

A avaliação contínua consiste em quatro testes escritos (T1, T2, T3 e T4) e num relatório de um trabalho prático de laboratório (P), todos classificados de 0 a 20 valores. A nota final resulta da média das cinco avaliações e tem que ser igual ou superior a 10 valores para aprovação.

Notresença na aula prática de laboratório é obrigatória, bem como a redacção em grupo do relatório do trabalho prático execa final avaliação contínua=(T1+T2+T3+T4+P)/5

A putado.

Nas épocas de Exame, Exame de recurso, Trabalhador-Estudante e Especial, os alunos serão avaliados num teste teórico (T) classificado de 0 a 20 valores sendo a nota final resultante da seguinte ponderação com a nota média obtida no relatório do trabalho prático (P):

Nota final exames=T*0,8+P*0,2

Aprovam os alunos que obtenham nota final no exame igual ou superior a 10 valores.

Software utilizado em aula

Não aplicável

Estágio

Não aplicável.

Bibliografia recomendada

- Eastop, D. (1998). Chemical Principles of Textile Conservation . 1, Butterworth. Oxford
- Antunes, J. (2016). Apontamentos de Quimica 2 . 1, IPT. Tomar
- Matteini, M, e Moles, A, (1989). La Chimica nel Restauro . 1, Nardini Ed., Roma
- Wolbers, R. (2000). Cleaning Painted Surfaces: Aqueous methods . 1, Archetype Publications. London

Coerência dos conteúdos programáticos com os objetivos

Os conteúdos programáticos são coerentes com os objectivos da unidade curricular, uma vez que o programa adoptado leva os alunos a adquirir conhecimentos sobre os equilíbrios necessários à compreensão da reactividade dos materiais presentes no Património e utilizados na sua conservação e restauro.

Metodologias de ensino

Aulas teóricas e teórico-práticas que abordam os conteúdos programáticos. Aulas práticas em laboratório de química.

Coerência das metodologias de ensino com os objetivos

As metodologias de ensino estão em coerência com os objectivos de aprendizagem na medida em que possibilitam ao estudante a aquisição de conhecimentos sobre o equilíbrio químico necessários à compreensão da reactividade dos materiais presentes no Património e utilizados na sua conservação e restauro. A combinação de aulas teóricas expositivas com a resolução de problemas-tipo afigura-se-nos como sendo a metodologia mais eficaz.

Por outro lado, o desenvolvimento de conhecimentos e competências necessárias à prática da conservação e restauro é contemplado numa abordagem prática, interligada com os temas debatidos na componente teórica.

Com esta estratégia visa-se estimular a compreensão e interpretação do aluno e habilitá-lo a ser capaz de integrar o conhecimento químico na sua prática, em coerência com os objectivos da unidade curricular.

Língua de ensino	
Português	
Pré-requisitos	

•

Não aplicável.

Programas Opcionais recomendados

Não aplicável.

Observações

Objetivos de Desenvolvimento Sustentável:

4 - Garantir o acesso à educação inclusiva, de qualidade e equitativa, e promover oportunidades de aprendizagem ao longo da vida para todos;
5 - Alcançar a igualdade de género e empoderar todas as mulheres e raparigas;

Docente responsável

Manuel Alberto Nogueira Henriques Rosa

Digitally signed by Manuel Alberto Nogueira Henriques Rosa

Homologado pelo C.T.C.