

# Escola Superior de Tecnologia de Abrantes

# Engenharia Mecânica

Licenciatura, 1º Ciclo

Plano: Despacho nº 14312/2015 - 02/12/2015

### Ficha da Unidade Curricular: Transmissão de Calor

ECTS: 5; Horas - Totais: 135.0, Contacto e Tipologia, T:15.0; TP:30.0; PL:15.0;

Ano letivo: 2020/2021

OT:3.50;

Ano | Semestre: 2 | S2

Tipo: Obrigatória; Interação: Presencial; Código: 912324

Área Científica: Engenharia Mecânica

### **Docente Responsável**

Flávio Rodrigues Fernandes Chaves Professor Adjunto

### Docente(s)

Flávio Rodrigues Fernandes Chaves Professor Adjunto

# Objetivos de Aprendizagem

São apresentados os conceitos associados à Transmissão de Calor, tendo como objetivo providenciar os futuros engenheiros com as ferramentas necessárias para compreender os aspetos fundamentais desta área e analisar problemas que poderão surgir na sua vida profissional.

# Objetivos de Aprendizagem (detalhado)

Estabelecer uma base de conhecimento de Transmissão de Calor que permita o desenvolvimento de diversas atividades no âmbito da Engenharia Mecânica, assim como o estudo deste tema em outras unidades curriculares da mesma área científica. Compreensão dos fenómenos de transferência de calor, princípio de funcionamento e mecanismos.

Estabelecer equações fundamentais, condições de fronteira e hipóteses simplificativas para problemas típicos de condução, convecção e radiação

### **Conteúdos Programáticos**

- 1. Introdução
- 2. Condução de calor.
- 3. Condução de calor em regime permanente unidimensional e sem geração de calor.
- 4. Condução de calor em regime permanente, unidimensional e com fontes volúmicas de calor.
- 5. Alhetas.
- 6. Condução de calor em regime transiente.
- 7. Convecção.
- 8. Permutadores de calor: Tipos de permutadores de calor.
- 9. Radiação em meio transparente.

# Conteúdos Programáticos (detalhado)

- 1. INTRODUÇÃO
- 1.1 Áreas de aplicação da transferência de calor
- 1.2 Transmissão de calor por condução
- 1.5 Princípio da conservação de energia: Balanços Térmicos
- 1.6 Metodologia para resolução de problemas de transmissão de calor
- 2. CONDUÇÃO DE CALOR
- 2.1 Introdução
- 2.2 Equação unidimensional da condução de calor
- 2.3 Equação geral da condução de calor
- 2.4 Condições de fronteira e iniciais
- 3. CONDUÇÃO DE CALOR EM REGIME PERMANENTE UNIDIMENSIONAL E SEM GERAÇÃO DE CALOR
- 3.1 Sistemas semi-infinitos limitados por duas superfícies planas
- 3.2 Sistemas cilíndricos de comprimento infinito
- 3.3 Espessura crítica de isolamento
- 3.4 Sistemas esféricos
- 4. CONDUÇÃO DE CALOR EM REGIME PERMANENTE, UNIDIMENSIONAL E COM FONTES VOLÚMICAS DE CALOR
- 4.1 Sistemas semi-infinitos limitados por duas superfícies planas
- 4.2 Sistemas cilíndricos de comprimento infinito
- 5. ALHETAS
- 5.1 Introdução
- 5.2 Aproximação teórica
- 5.6 Coeficiente global de transmissão de calor
- 6. CONDUÇÃO DE CALOR EM REGIME TRANSIENTE
- 6.1 Introdução
- 6.2 Número de Biot
- 6.3 Bi menor que 0,1: Corpo de resistência térmica desprezável
- 6.4 Bi > 0,1: Corpo de resistência térmica interna considerável
- 7. CONVECÇÃO
- 7.1 Conceitos fundamentais
- 7.2 Desenvolvimento da camada limite de velocidades

- 7.5 Convecção forçada em escoamento através de feixes de tubos
- 7.6 Convecção natural: Determinação do coeficiente h, relações empíricas
- 8. PERMUTADORES DE CALOR: TIPOS DE PERMUTADORES DE CALOR
- 8.1 Introdução
- 8.2 Tipos de permutadores de calor
- 8.7 Metodologia nos cálculos de permutadores de calor
- 8.8 Permutadores de calor compactos
- 9. RADIAÇÃO EM MEIO TRANSPARENTE

### Metodologias de avaliação

A nota final (NF) de avaliação de conhecimentos na disciplina será calculada de acordo com o critério:

Exame (E) -60%, Trabalhos (Trab) -40%. NF = 0,60.E + 0,40.Trab

Os trabalhos/projetos são individuais e/ou em grupos de dois elementos (máx):

Trabalho 1: Escolha de um tema dentro da opção A (2,5 valores).

Trabalho 2: Conceção de uma ferramenta de cálculo para solucionar problemas selecionadas da sebenta (2,5 valores).

Trabalho 3: Simulação com recurso à ferramenta HAP de uma fração de um edifício de comércio/serviços – vertente energética (3,0 valores).

### Software utilizado em aula

Hourly Analisys Program - HAP

### Estágio

Não aplicável

### Bibliografia recomendada

- Çengel, Y. e Ghajar, A. (2015). *Heat and mass transfer: fundamentals & applications* . 5, McGraw-Hill. EUA
- Figueiredo, R. (2015). Transmissão de Calor . 1, Lidel. Lisboa
- Incropera, F. (2002). Fundamentals of Heat end mass transfer (Vol. -).. John Wiley & Sons. -

### Coerência dos conteúdos programáticos com os objetivos

Conhecimentos técnicos e científicos da área da transmissão de calor, tendo em consideração os principais modos de transferência de energia: condução, convecção e radiação.

Os conteúdos programáticos da unidade curricular abordam os temas de forma faseada, baseados no desenvolvimento de competências que permitam uma aprendizagem proactiva, dando-se ênfase à componente experimental e de projeto de forma a permitir o desenvolvimento das competências dos alunos, que serão necessárias no contexto sua atividade profissional.

# Metodologias de ensino

Apresentações em diapositivos. Serão resolvidos exemplos de exercícios de aplicação e sempre que necessário, realizadas experiências laboratoriais demonstrativas dos conceitos aprendidos.

# Coerência das metodologias de ensino com os objetivos

Esta unidade curricular visa facultar aos estudantes os referenciais teóricos sobre os conceitos básicos de Transmissão de Calor. Neste sentido, é realizada uma exposição sistemática da informação de modo a facultar aos estudantes a teoria e os instrumentos metodológicos das áreas em estudo. São apresentados casos particulares e são resolvidos problemas nas aulas, nos quais é estimulada a participação dos alunos. As aulas de prática laboratorial complementam as aulas teóricas e teórico-práticas contribuindo para a aplicação prática dos conhecimentos a projetos e análise de diversos casos de estudo, permitindo a consolidação de conhecimentos.

| projetos e análise de diversos casos de estudo, permitindo a consolidação de conhecimentos. |
|---------------------------------------------------------------------------------------------|
| Língua de ensino                                                                            |
| Português                                                                                   |
| Pré-requisitos                                                                              |
| Não aplicável                                                                               |
| Programas Opcionais recomendados                                                            |
| Não aplicável                                                                               |
| Observações                                                                                 |

Horário de Atendimento: 2ª feira - 15h30 às 16h30

De forma complementar, é apresentado aos alunos uma perspetiva com base em indicadores dos Objetivos de Desenvolvimento Sustentável (ODS), nomeadamente os pontos 7 e 13 Energias renováveis e acessíveis e Ações climáticas - relacionando a integração em projeto de sistemas de energias renováveis, reduções de consumo e impacto na sustentabilidade das cidades.

## Docente responsável

Flávio Chaves Assinado de forma digital por Flávio Chaves