

Escola Superior de Tecnologia de Tomar

Engenharia Electrotécnica e de Computadores

Licenciatura, 1º Ciclo

Plano: Despacho nº 10766/2011 - 30/08/2011

Ficha da Unidade Curricular: Electrónica de Potência (Ramo de Energia)

ECTS: 6; Horas - Totais: 162.0, Contacto e Tipologia, T:28.0; TP:28.0; PL:14.0;

Ano letivo: 2018/2019

OT:5.0;

Ano | Semestre: 3 | S1

Tipo: Obrigatória; Interação: Presencial; Código: 911223

Área Científica: Electrónica

Docente Responsável

Raul Manuel Domingos Monteiro

Professor Adjunto

Docente(s)

Francisco José Alexandre Nunes Professor Adjunto Raul Manuel Domingos Monteiro Professor Adjunto

Objetivos de Aprendizagem

Proporcionar conhecimento sobre os componentes e circuitos utilizados em Eletrónica de Potência. Aquisição de conhecimentos sobre os conversores mais utilizados na Indústria e suas aplicações. Introdução aos problemas que aparecem em situações práticas que envolvem a concepção, projeto e montagem.

Objetivos de Aprendizagem (detalhado)

Proporcionar conhecimento sobre os componentes e circuitos utilizados em Eletrónica de Potência. Aquisição de conhecimentos sobre os conversores mais utilizados na Indústria e suas aplicações. Introdução aos problemas que aparecem em situações práticas que envolvem a concepção, projeto e montagem.

Conteúdos Programáticos

- 1. Introdução; revisões de conceitos fundamentais
- 2. Elementos passivos e ativos nos conversores; caracterização; referência ao ruído eletromagnético e interferência eletromagnética (EMI)
- 3. Conversores DC/DC comutados sem isolamento galvânico.
- 4. Conversores DC/DC comutados com isolamento galvânico.
- 5. Conversores DC/AC comutados
- 6. Conversores AC/DC
- 7. Projeto de componentes magnéticos

Conteúdos Programáticos (detalhado)

Revisão de conceitos fundamentais. Convenções e definições. Introdução à Eletrónica de Potência. Principais aplicações. Conversores eletrónicos de potência lineares e comutados; características; classificação.

Elementos passivos nos conversores eletrónicos de potência; caracterização. Dispositivos semicondutores de potência mais comuns: díodo, tirístor, TJB, MOSFET, IGBT, GTO; caracterização; referência a outros dispositivos: JFET, FCT, MCT, SITH. Funcionamento em comutação e suas principais consequências. Perdas térmicas em circuitos comutados; limitações. Alguns cuidados a ter no projeto de circuitos comutados.

Conversores DC/DC comutados sem isolamento galvânico: redutor (buck converter), ampliador (buost converter), redutor ampliador (buck boost converter), Cúk (Cúk converter); regime transitório e regime estacionário; modo de funcionamento contínuo (ou não lacunar) e modo de funcionamento descontínuo (ou lacunar); determinação do modelo em funcionamento estacionário; introdução ao controlo dos conversores comutados. Modulação de largura de impulso (PWM). Exemplos de circuitos de comando isolados e não isolados (high-side and low-side drivers) para MOSFET/IGBT utilizados nos conversores.

Projeto de componentes magnéticos

Conversores DC/DC comutados com isolamento galvânico: conversor flyback (flyback converter), conversor forward (forward converter), conversor push pull (push pull converter), conversor em meia ponte (half bridge converter), conversor em ponte completa (full bridge converter). Circuitos de ajuda à comutação (Snubbers). Aplicações. Referência aos conversores ressonantes DC/DC. Conversores de tensão DC/AC (inversores de tensão); conversores monofásicos e trifásicos; tipos de modulação. Harmónicas. Aplicação dos inversores na variação de velocidade de máquinas AC. Aplicações em filtros ativos para a rede elétrica; utilização na interligação entre fontes de energia renováveis (fotovoltaico, eólico) e sistemas de armazenamento de energia, e a rede elétrica. Princípio de funcionamento dos conversores de corrente DC/AC (inversores de corrente). Referência à existência de interferência eletromagnética (EMI). Referência aos conversores ressonantes DC/AC.

Conversores AC/DC (retificadores). Retificadores não controlados (retificadores a díodos) e retificadores controlados (retificadores a tirístores) monofásicos e trifásicos; estudo com vários tipos de carga: carga R, R L, R L f.e.m.. Bobina de comutação; condução simultânea. Filtragem capacitiva e efeitos na rede elétrica. Harmónicas. Fator de potência, fator de deslocamento, distorção harmónica total; referência à existência de interferência eletromagnética (EMI). Referência a retificadores com corrente de entrada sinusoidal. Funcionamento como retificador e como inversor nos retificadores controlados.

Metodologias de avaliação

Exame escrito e Projeto de um conversor eletrónico de potência construído em PCB.

Classificação final (CF) na UC: CF=0,5E+0,5P

em que E: classificação no Exame; P: classificação no Projeto; classificações mínimas para

aprovação: CF>9,5; E>8,5; P>9,5.

Software utilizado em aula

LTSpice-simulador SPICE, desenho de esquemáticos e visualização de formas de onda.

Estágio

Não aplicável.

Bibliografia recomendada

- M. Undeland, T. e P. Robbins, W. (2002). Power Electronics: Converters, Applications, and Design Wiley: John Wiley & Sons
- Maksimov, D. e W. Erickson, R. (2012). Fundamentals of Power Electronics Springer: Springer
- Nunes, F. (0). *Diapositivos de Eletrónica de Potência* Acedido em 14 de setembro de 2015 em http://www.e-learning.ipt.pt/mod/resource/view.php?id=38451
- Monteiro, R. (0). Sebenta de Eletrónica de Potência Acedido em 14 de setembro de 2015 em http://www.e-learning.ipt.pt/mod/resource/view.php?id=54878

Coerência dos conteúdos programáticos com os objetivos

Os conteúdos programáticos da unidade curricular de Eletrónica de Potência estão em coerência com os objetivos definidos, uma vez que o programa foi concebido de forma a dotar os alunos das competências e conhecimentos específicos definidos para esta unidade curricular. Começa-se por introduzir conceitos gerais da eletrónica de potência, passando pelos dispositivos de potência e pelos vários circuitos conversores, com especial ênfase aos que são utilizados na indústria; por fim, o projeto faz a integração prática de todos esses elementos, e constitui uma fase de interiorização do conhecimento. Os objetivos, competências e conhecimentos conferidos por esta unidade curricular enquadram-se em conteúdos programáticos lecionados em outras Instituições de Ensino Superior Portuguesas e Internacionais de cursos similares.

Metodologias de ensino

Aulas teóricas para apresentação dos conteúdos programáticos;

Aulas teórico práticas para resolução de problemas, demonstrações e experiências laboratoriais; Orientação individual do aluno no desenvolvimento do projeto e esclarecimento de dúvidas.

Coerência das metodologias de ensino com os objetivos

A unidade curricular de Eletrónica de Potência tem a duração de um semestre letivo e foi concebida de acordo com os objetivos de aprendizagem definidos; tem um número total de 162

horas e é creditada com 6 ECTS. As aulas estão organizadas em aulas teóricas e aulas teórico-práticas; nas aulas teóricas é feita a exposição dos conceitos teóricos indicados nos conteúdos programáticos; apresentam-se, também, alguns exemplos e alguns problemas de teor prático. Nas aulas teórico-práticas são efetuados problemas sobre a matéria dada nas aulas teóricas e é efetuado um projeto, conforme está descrito nos objetivos de aprendizagem e nas metodologias de ensino. O projeto faz a integração prática de todos esses elementos, e constitui uma fase de interiorização do conhecimento. A metodologia utilizada, bem como a excelente integração entre as aulas teóricas e as aulas teórico-práticas permite aos alunos adquirir os conhecimentos e as competências definidos nos objetivos de aprendizagem, bem como efetuar a sua consolidação de forma gradual e estruturada. A organização e duração da unidade curricular de Eletrónica de Potência enquadra-se nas estruturas que são normalmente encontradas em outras Instituições de Ensino Superior Internacionais e Portuguesas.

Língua de ensino	
Português	
Pré-requisitos	
Não aplicável.	
Programas Opcionais recomendados	
Não aplicável.	

Docente responsável

Digitally signed by Raul Monteiro

Raul

Monteiro

Homologado pelo C.T.C.