Publication in the Diário da República: Despacho n.º 12419/2016 - 14/10/2016
6 ECTS; 3º Ano, 1º Semestre, 30,0 T + 45,0 TP + 5,0 OT , Cód. 814320.
Lecturer
            - Sandra Maria Gonçalves Vilas Boas Jardim  (2)
(1) Docente Responsável
(2) Docente que lecciona
Prerequisites
          The course builds on the knowledge acquired in Calculus, Discrete Mathematics, Programming and Algorithmics and Programming Languages. 
Objectives
          1. Basic principles, mathematical foundations and technical applications of machine learning. 
2. The strengths and weaknesses of  different algorithms for different  domains of application. 
3. The overlearning phenomenon. 
Program
          I. Introduction 
II. Parametric regression
III. Fundamentals
IV. MV method and regression models
V. Classification concepts 
VI. Bayes Theory
VII. Linear discriminant classification
VIII. Gradient descent methods
IX. Classification with logistic discriminants and neuronal networks 
X. Non-supervised methods 
XI. Decision trees 
Evaluation Methodology
          Written test worth 40% of the final mark.
Battery of problem solving tasks worth 60% of the final mark.
Bibliography
          - Jensen, F.  e Nielsen, T. (2007). Bayesian Networks and Decision Graphs (Information Science and Statistics). (Vol. 1). (pp. 1-448). USA:  Springer
- Marques, J. (2005). Reconhecimento de Padrões - Métodos Estatísticos e Neuronais. (Vol. 1). (pp. 1-284). Lisboa:  IST Press
- Stork, D.  e Hart, P.  e O. Duda, R. (2000). Pattern Classification. (Vol. 1). (pp. 1-635). USA:  Wiley-Interscience
Teaching Method
          Classes include topic presentation  and practical cases.  Key topics are supported by exercises and computer-based practical coursework.  
Software used in class
          

















